Visual C++ 6.0

Microsoft Platform SDK

W HAT YOU NEED

Windows 2000

Learn to use
COM+ to create
application
logging for

a robust

application and

faster time to
market.

by Juval Lowy

Get Into a

Middle iy d

Log Rhythm

O ne of the most crucial actions you can
take to achieve a robust application and
faster time to market is to employ application
logging. In this article, I present the COM+
logbook, a simple utility that enables you to log
method calls, events, and errors, as well as various
COM:+ information. The logbook is your prod-
uct flight recorder, and in a distributed COM+
environment, it’s worth its weight in gold. It
saved my skin whenever I tried to analyze why
things didn’t work the way they were supposed to
(ever happen to you?).

Simply examining the log files lets you analyze
what took place across machines and applica-
tions, and the source of the problem is almost
immediately evident. The logbook is also useful
in troubleshooting customer problems post-
deployment; the customers simply send you the

log files.

30 | VISUAL C++ DEVELOPERS JOURNAL NOVEMBER 2000

LOoGBOOK’S MANY REQUIREMENTS

Logbook is a versatile server applica-
tion that be used in any Win32 app
(such as MFC or classic COM), not just
COM+, and its only requirement is that
the app runs on Windows 2000. Here
are the requirements set for the log-
book:

1.Trace the calling tree (the causal-
ity) from the original client down
to the lowest components, across
threads, process, and machines;
thereby, tracing the logical thread
of execution.

2.Log the times and locations of
calls, events, and errors.

3. All the calls from all the applica-
tions should be interleaved—in

| www.vcdj.com

order—in one log file.

4.Log the current COM+ execution
context.

5.Be able to customize what is
logged administratively (for ex-
ample, events and errors, or just
rrors).

6.Be able to specify the log file
name administratively.

7.Logging and tracing should be as
easy as possible for the applica-
tions.

8.The log data should be accessible
in two formats: HTML or XML.

9.The logbook application and the
applications using it should have
different lifelines.

10. Be able to turn logging on and off.

In addition to teaching how to use the log-
book, this article explains how it works. The
logbook makes elegant, simple use of many COM +
features such as event system, just-in-time activa-
tion (JITA), object pooling, idle time manage-
ment, automatic deactivation of objects, syn-
chronization, and the object constructor string.
The logbook is a good example of the synergy you
get from using multiple services togetherand how
they cooperate.

The COM+ logbook isa COM+ server appli-
cation that implements many requirements (see
the sidebar, “Logbook’s Many Requirements”).
It can be used in any Win32 application (such as
MEC or classic COM), not just COM+, and the
only requirement is that the application runs on
Windows 2000.

Figure 1 shows the tracing and logging entries,
in HTML format. To view the XML format,
examine the same entries in Logbook.xml; down-
load the code from the VCDJ Web site (see the
Go Online box for details).

The HTML log file is already well formatted
and can be viewed by users as is. The XML log
file is less presentable, but of course has many
potential ways of presentation when applying
various XSL schemas to it (such as presenting just
errors, or only entries from specific machines, and
50 on).

Install, Use, and Configure the Logbook
First you need to install the logbook. Download
the logbook.msi and the header file ComLog-
Book.h, and install the MSI file (double-click on
it to import it to the COM+ catalog). That's it.
To enableyourapplication to use the logbook,
include the ComLogBook.h header file in your
app. ComLogBook.h defines four helper macros
for logging (see Table 1). The macros can be used
independently of each other and in every combi-
nation. For example, to trace a method call into

the logbook, pass the method name as a parameter to the
LOGMETHOD() macro:

void CMyClass::MyMethod()

{
LOGMETHOD("CMyClass: :MyMethod");
//Real work starts here

I recommend using LOGMETHOD() before doing any-
thing else in the methods. The LOGMETHOD() macro will
log, along with the method name, all the required informa-
tion: call time, call location (machine, module, filename, and
line number), and execution context (process, thread, con-
text, transaction, and activity). Similarly, you can use
LOGEVENT() to log events and LOGERROR() to log
errors (download Listing 1 from the VCDJ Web site; see the
Go Online box for details).

You configure the various logging options directly using
the Component Services Explorer. After installing the log-
book, you should have a new COM+ application called
Logbook with three components: the HTML logger, the
XML logger, and an event class (see Figure 2).

The main mechanism behind the logs is COM+ LCE
(loosely coupled event). The macros publish the data as
COM+ events, and the logbook components are persistent
subscribers. Each logbook component has four persistent
subscriptions in its Subscription folder: Errors Only, Meth-
ods Only, Events Only, and Log All.

Enabling or disabling a subscription allows you to control
what is being logged and in what format. By default, both the
HTML and the XML Log All subscriptions are enabled after
installation. If, for example, you want to enable only HTML
logging of events and errors, follow these steps: Go to the
XML components, select the Log All subscription, display its

properties (by right-clicking on it), go to the Options tab, and
disable the subscription. Similarly, disable the HTML
component’s Log All subscription. Next, enable the HTML
component’s Errors Only and Events Only subscriptions.
The HTML and XML components log to C:\Temp\
Logbook.htm and C:\Temp\Logbook.xml, respectively,
by default.

The filenames are provided as constructor strings to the
components. To specify a different filename (for example,
D:\MyLog.htm for the HTML component), display the HTML
component properties and select the Activation tab (see Figure
3). Under Object Constructor, specify the new filename.

One interesting aspect of the logbook is that because it uses
persistent subscriptions, its lifeline is independent from the
applications using it. As a result, logs from many application
runs are concatenated in the same file. If you want the logbook
to start a new log file, you must manually shut down the
logbook application (right-click on it in the COM+ explorer
and select Shut Down). The next time an application pub-
lishes to the logbook, the logbook will clear the file and start
fresh. You can shut down and restart the logbook even when
the logging app is running.

MIDDLE TIER

MACRO NAME DESCRIPTION

" LOGMETHOD()
LOGERROR() . Logs an error into the logbook.
LOGEVENT() Logs an event into the logbook.

LOGERROR_AND_RETURN()

. Traces a method call i/nrttr)rthe Vlorgtr)ook.

Logs an error into the loghook and returns in case of

| an error, or continues to run when no error has occurred.

Table 1 | Logging Macros Defined in ComLogBook.h. These four macros can be used
independently of one another and in every possible combination. The macros automate
collecting the information and the logging operation. Download the Logbook help file for
detailed information on using the macros, as well as code samples; get the code from the V(DJ

Web site (see the Go Online box for details).

LOGGING ENTRIES IN HTML

Time Machine [ProcessID|ThreadlD ContextID Transaction ID AetivitylD Module Description Source Line
070772000 MyLaptop|1392 Dx60c [Default Context No Transaction No Activity TestLogClient exe CTestLogClientDlg:OnCallObject TestLogClientDlg cpp (181
16:45:59
07/07/2000 MyLaptop|l760 Dx680 |[{IF114BA41EIC- |[{DDC184AB-A21F- |[{C8C3C44F-EN6A- [TestServerdll CTestLog:DoSomething TestLog.cpp 15
16:46:12 MCAD-9181- 4305.9C34A- 44F1-9D0A-

B6F014D33322} R6BD02B5SASFF} DTABTETAS645}
07/07/2000 MyLaptop(1392 Dx60c Default Context No Transaction No Activity TestLogClient exelCTestLogClientDlg::OnLogEnor Sirulating an error Trrvalid
16:46:13 being logged ointer

710772000 MyLaptop|l392 Dx60c Default Context No Transaction No Activity TestLogClient exelCTestLogClientDlg::OnLogEnor Simulating an error Trevalid

16:46:13 beinglogged _ [pointer
070712000 iyLaptop|i392 Dx60c Default Context No Transaction No Activity TestLogClient exeSimulating an event being logged
16:46:14
0710772000 MyLaptop|1392 Dxf0c [Default Context No Transaction No Activity TestLogClient exe/CTestLogClientDlg::OnCallObject TestLogClientDlg.cpp 181
16:46:16
07/07/2000 MyLaptop|l 760 0x680 |[{C2B7BEDB-TE12- |{036F9ACT7-350C- |{FSFTE62F-D4A3- [TestServerdll [CTestLog:DoSomething TestLog.cpp 15
16:46:16 U4F4-91C7- 434F-BCEA- MCED-B753-

[EFD141 ABA3T71} 19E1FC71058C} 1C617934768D }

Figure 1 | The HTML log file shows the tracing and logging entries are already well formatted, and users can view them as is. Each entry contains the entry number (different
numbers for methods calls, events, and errors), the call, error, and event time and location, machine name, process ID, thread ID, context ID, transaction ID, activity ID,
the module name (the EXE or DLL name), the method name or the error/event description, the source filename, and the line number.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL NOVEMBER 2000 |

31

Middle

You already saw that the logbook uses COM+ events to
pass the information collected on the logging application side
to the logbook components. The components (the HTML
and XML producers) implement the ILogbook interface—a
custom interface with methods corresponding to what is
being logged—method call, event, or error (see Figure 2,
download Listing 2). The helper macros collect the informa-
tion on the application side, pack itina LOG_ENTRY struct,
create a COM+ event class that also implements ILogbook,
and fire the appropriate event. The logbook then receives the
event, formats it appropriately (to HTML or XML), and
writes it to the file.

Deciding to use COM+ events was, in a way, the easy part
of the design. I faced a few other challenges. How do I channel
all the events to the same logbook component? How do I
collect all the tracing information I was interested in? To solve
the first problem, I used COM+ instance management ser-
vices. The components in the logbook application are config-
ured to use object pooling and JITA to create the COM+
equivalent of a singleton.

Each component (HTML and XML) implements the
I0bjectControl interface and returns TRUE from
I0bjectControl::CanBePooled. The object pool is config-
ured to have a minimum and maximum pool size of 1, which
ensures there is always exactly one instance of the component

of that type (see Figure 3).

INSTALLING THE COM+ LoGBOOK APPLICATION

im Component Services

=-{23 Computers

EQ My Computer
E-[Z3 COM+ Applications
E]& Logbook

=-&@ LogBook,ComLogHTML. 1
(3 Interfaces

=X)
LogError
LogEvent
LogMethod

(3 subscriptions
@9 Errors Only
-@g Events Only
g Log Al

Figure 2 | After installing the logbook, you should have a new COM+ application called Logbook with
three components: the HTML logger, the XML logger, and an event class. All three components
implement the ILogBook interface with the methods LogError(), LogEvent(), and LogMethod(). The
HTML and XML components have four subscriptions—one for each ILogBook method and one for all
the methods on the interface.

34 | VISUAL C++ DEVELOPERS JOURNAL NOVEMBER 2000 | www.vcdj.com

When a logging client application publishes an event to the
logbook, COM+ retrieves the logbook component from the
pool, hands the event over to it, and, once the method of
ILogBook returns, releases it back to the pool. But what would
happen if a greedy application creates the logbook component
directly and holds on to it? The maximum pool size is 1, so
COM+ can’tcreateanother instance of the logbook component
to publish the event to it; instead, it waits for the existing object
to return to the pool, which doesn’t happen because an existing
application holds a reference to it. As a result, all attempts from
other applications to publish to the logbook fail after the
timeout specified in the Creation Timeout field (see Figure 3).

The solution: Use JITA. If the logbook component indi-
cates to COM+ that it is willing to be deactivated (destroyed)
and is configured to use JITA, COM+ will release the compo-
nents (in this case back to the pool instead of a real release).
The greedy app won't know the difference because it still has
a reference to a valid proxy, which points to the logbook
component interceptor. The next time the greedy client
application tries to access the logbook, COM+ will detect it,
retrieve the object from the pool, and hook it up with the
interceptor; the greedy application’s call will go through.

The logbook components ultimately are configured to use
JITA. The thing is, a logbook component must still let
COM+ know when to deactivate it. The logical place is at
method boundaries, when it is done logging to the file. For
that, the traditional way (a la Microsoft Transaction Server)
was to get a hold of the object’s context interface
(IObjectContext), and call SetComplete().

COM3+ provides a new interface to do the same
(IContextState::SetDeactivateOnReturn()), but there is even
a better way, one that doesn’t require writing a single line of
code: COM+ method auto deactivate. If you browse down to
the method level in the logbook application and display the
method properties on the General tab (see Figure 4), you can
configure your method to deactivate the object automatically
on return. When the method returns, COM+ will call
IContextState::SetDeactivateOnReturn() on your behalf.
Cool, isn’t it?

The logbook components use the Both threading model.
Synchronization is provided by having the component con-
figured as Synchronization = Required (component proper-
ties, Concurrency tab). Note that JITA requires synchroniza-
tion, so the only synchronization settings enabled are Re-
quired and Requires New.

One other configuration setting I used was to have COM+
leave the logbook app running when idle (Logbook application
properties, Advanced tab). This keeps the pool alive even when
no external clients are logging. Asa result, all theloggingis done
to the same file, which also improves performance because it
means you create a new application and object only once.

You already saw that the filename is passed as a con-
tractor string. To access that string, the logbook compon-
ents implement IObjectConstruct. COM+ queries for

IObjectConstruct after creating the object, and passes to
IObjectConstruct::Construct() apointer toan IObjectConstruct
String object. You can use that pointer to get the constructor
string, in this case a filename (download Listing 3).

The other major challenge is collecting the information on
the client side. Some of it, such as the line number, file, and
module name, have nothing to do with COM+ and are simply
neat programming tricks. If you’re curious, look at the source
files. But the execution context IDs are a different story.
Fortunately, COM+ has an excellent infrastructure for re-
trieving the context, transaction, and activity ID—the
IObjectContextInfo interface.

You can use IObjectContextInfo to retrieve the context,
transaction, and activity ID. This is exactly what the helper
macros shown in Table 1 do on the client side. Download
Listing 4 for an example of how to get the current transaction
ID. The macros use a helper class—CEventLogger—to col-
lect the information and publish it to the logbook (download
Listing 5).

The logbook implementation takes advantage of many
COM+ services, and it’s a good example of how those services
cooperate. The logbook uses the Component Services Ex-
plorer for configuration, the same environment you use for
configuring your components.

A LoGBOOK COMPONENT ACTIVATION TAB

LogBook.ComLogHTML.1 Properties

e

! J el

Figure 3 | A logging component uses object pooling with exactly one
object in the pool to ensure all loghook entries are serialized in order
to the same file. Just-in-time activation (JITA) is used to return the
object to the pool between invocations, even when an application
holds a reference to it. The object constructor string is used to pass
in the logbook filename.

ENABLING METHOD AuTo DEACTIVATION

LogError Properties

N ———

utomatically deactivating the object will return it to the pool ’
(v

Figure 4 | COM+ deactivates the object after each method call—in
this case, receiving an event—when auto deactivation is enabled
because you're using JITA. You must set this attribute on each
method of ILogBook.

You can download a VC++ project that contains not only
the source files of the logbook but also a demo client and
server—both use the logbook—and a Windows 2000 help file
for the logbook users. You can extend the logbook or improve
on it (such as adding verbosity levels), but in any case, once
you start enjoying the productivity boost of a flight recorder,
you will find yourself asking one question: “How did I ever
manage without it?”

About the Author

Juval Lowy is a seasoned software architect. He spends his time
publishing and conducting training classes and conference talks on
object-oriented design and COM/COM+. He was an early adopter of
COM and has unique experience in COM design. He is author of an up-
and-coming book on COM+ and .NET (O'Reilly). E-mail him at
idesign@componentware.net.

G O ONLINE

; dlrectty to these,related resources. ,
’ 5;’VC0011 Download all the code for th1

} header file required for a client to use the togbook a
‘Windows 2000 help file, and a VC++ project that contai
source files for the logbook and a demo client and server.

~ VCOO11MT_T Read this article onlme DevX PremIer Club '
“membership i is required.

Want to subscribe to the Premier Club? Go to www devx com.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL NOVEMBER 2000 | 35

MIDDLE TIER

